(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(a, h(x)) → f(g(x), h(x))
h(g(x)) → h(a)
g(h(x)) → g(x)
h(h(x)) → x

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, h(z0)) → f(g(z0), h(z0))
h(g(z0)) → h(a)
h(h(z0)) → z0
g(h(z0)) → g(z0)
Tuples:

F(a, h(z0)) → c(F(g(z0), h(z0)), G(z0), H(z0))
H(g(z0)) → c1(H(a))
G(h(z0)) → c3(G(z0))
S tuples:

F(a, h(z0)) → c(F(g(z0), h(z0)), G(z0), H(z0))
H(g(z0)) → c1(H(a))
G(h(z0)) → c3(G(z0))
K tuples:none
Defined Rule Symbols:

f, h, g

Defined Pair Symbols:

F, H, G

Compound Symbols:

c, c1, c3

(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)

Removed 1 leading nodes:

F(a, h(z0)) → c(F(g(z0), h(z0)), G(z0), H(z0))
Removed 1 trailing nodes:

H(g(z0)) → c1(H(a))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, h(z0)) → f(g(z0), h(z0))
h(g(z0)) → h(a)
h(h(z0)) → z0
g(h(z0)) → g(z0)
Tuples:

G(h(z0)) → c3(G(z0))
S tuples:

G(h(z0)) → c3(G(z0))
K tuples:none
Defined Rule Symbols:

f, h, g

Defined Pair Symbols:

G

Compound Symbols:

c3

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

G(h(z0)) → c3(G(z0))
We considered the (Usable) Rules:none
And the Tuples:

G(h(z0)) → c3(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(G(x1)) = x1   
POL(c3(x1)) = x1   
POL(h(x1)) = [1] + [4]x1   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(a, h(z0)) → f(g(z0), h(z0))
h(g(z0)) → h(a)
h(h(z0)) → z0
g(h(z0)) → g(z0)
Tuples:

G(h(z0)) → c3(G(z0))
S tuples:none
K tuples:

G(h(z0)) → c3(G(z0))
Defined Rule Symbols:

f, h, g

Defined Pair Symbols:

G

Compound Symbols:

c3

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))